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Abstract

In this paper, we propose an approach for coupling a power network
dispatch model, which is part of a long term multi-energy model, with
Wardrop or Mean-Field-Game (MFG) equilibrium models that repre-
sent the demand response of a large population of small “prosumers”
connected at the various nodes of the electricity network. In a de-
terministic setting, the problem is akin to an optimization problem
with equilibrium constraints taking the form of variational inequali-
ties or nonlinear complementarity conditions. In a stochastic setting,
the problem is formulated as a robust optimization with uncertainty
sets informed by the probability distributions resulting from an MFG
equilibrium solution. Preliminary numerical experimentations, using
heuristics mimicking standard price adjustment techniques, are pre-
sented for both the deterministic and stochastic cases.
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email:ahaurie@gmail.com
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1 Introduction

An important issue in energy policy is the assessment of the possible con-
tribution of smart grids and demand response to fostering large scale pene-
tration of renewables and thus permitting a transition to low carbon econ-
omy. Variable renewable energy (VRE) like, e.g., solar panels and wind
mills, are technologies plagued with intermittency, which require secondary
reserve that could rapidly compensate a sudden loss of power. These re-
serves can be provided by battery packs managed by the utility and also
by the batteries of a large fleet of EVs and PHEVs1, provided the own-
ers of these cars (herein called prosumers) participate in a dynamic reserve
and demand response (charging schedule) program. Other prosumers, which
could provide grid storage are, e.g., the owners of home and o�ce appliances
and heating/cooling systems. Prosumers could also be involved in the dis-
tributed supply of reactive power compensation2. The energy system will
thus include a large number of distributed energy resources, managed in-
dependently by interconnected agents (the prosumers) that will coordinate
through price incentives received via the two-way communication system of
a smart-grid (SG). The problem addressed in this paper is the represen-
tation of demand response and prosumer behavior e↵ects in global energy
models, like ETEM-SG3, that are currently used to assess the transition to
sustainability of energy systems through deep penetration of VRE and SG
development.

In [4, 5], it has been shown that a linear programming model, as im-
plemented in ETEM-SG, could take into account this interaction between
utility and prosumers, provided one assumes that, in a deterministic envi-
ronment, the incentives are based on a nodal marginal cost pricing and the
prosumers are cost minimizers [6]. In particular, it has been shown in [4]
that, through a limit-game argument akin to the Wardrop equilibrium con-
cept [20], one could represent the whole population of prosumers as a single
activity within the linear program. Indeed, this implies that all prosumers
of a certain category share the same constraints concerning, e.g., the time at
which they need to have full usage of their device and, more importantly that
they behave as cost minimizers. This is likely an oversimplification and is a
motivation for the present paper in which one considers an ETEM-SG model

1Electric Vehicles and Plug-in Hybrid Electric Vehicles. In the rest of the paper we
shall refer only to PHEVs.

2Most of these activities take place at distribution level see [1] and [2] .
3ETEM-SG for Energy Technology Environment Model with Smart-Grids is a

technology-rich capacity expansion model used to assess long-term energy policies.
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where the dispatch submodel is coupled with a Wardrop equilibrium based
model that represents the dynamic pricing interaction between the utility
and the prosumers. In brief, in the approach proposed in this paper, one
represents the interaction between a utility and the many “small” prosumers
as an equilibrium in a noncooperative dynamic limit (infinite population)
game in both a deterministic and stochastic settings. In the deterministic
setting, this approach could be linked with the line of research concerning
mathematical programs with complementarity constraints (see [14]), and
more particularly multi-level optimization models [10] applied to yield and
revenue management [12]. The approach is then extended to a stochastic
setting, since demand response is inherently uncertain, due to the random
distribution of “state” of the population of prosumers. Since, e.g., a PHEV
owner will in general adopt a charging policy in the form of a feedback on
the state of charge of the battery and time of the day, the distribution of
state of charge of the batteries will result in a stochastic global demand for
charging PHEVs.

Recent works have studied prosumer behavior using game theory [33, 34,
19] and in particular, stochastic games, as in [15, 16]. In these works the
problem is set at the level of management of a utility which is in relation
with small sets of prosumers who play a non-cooperative game in their de-
cision to supply power, storage or reserve. The stochasticity in [33, 34, 19]
is related to the intermittency of wind or solar units providing the energy
to the prosumers, as well as the fact that individual agent control policies
are randomized. Interestingly, the proposed algorithms require very little a
priori knowledge, but the price paid is that the training time can become
very long if, as in the situation we are studying, the number of agents is very
high. The problem considered in this paper is not formulated at the day-
to-day management level, but rather at the long term design and planning
level. The issue is to find what should be the evolution of the technology
mix in a regional power system, in order to reach sustainability, defined, e.g.,
as a high penetration of renewables in the generation mix. Assessing the
contribution of demand response to this endeavor, through the implementa-
tion of dynamic time of use pricing is an important issue in these long-term
prospective models like TIMES [24] or ETEM-SG [5, 6]. In the present paper
we focus on the demand response of PHEV users for charging their vehicles.
The number of prosumers considered is not small as we consider a whole
population of PHEV users. It is similar to the tra�c congestion models
where the Wardrop equilibrium concept has emerged [20]. The stochasticity
we consider is related to the demand for charging, which will be distributed
in the whole population of users. The stochastic game model developed in
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[33, 34, 19] would be to no avail for our planning purposes and large number
of agents, whereas MFG models will provide an e↵ective tool.

Since we are considering an energy system for a whole region, the number
of prosumer agents will be large while each individual agent has very little
impact. We could therefore rely on a representation of prosumers behavior
as a solution of a stochastic limit game taking the form of an MFG [17].
The question now is “how can one link an MFG based model of charging
PHEV batteries, with a global energy model based on deterministic math-
ematical programming, in our case, ETEM-SG?”. The MFG model will
typically deliver a probability distribution on the state and actions of a
class of prosumers when in a Nash equilibrium within themselves. To inte-
grate this information in a mathematical programming model we propose
to use robust optimization (RO) techniques [9, 8, 13, 23, 32] where the de-
sign of uncertainty sets is based on the confidence regions obtained from
the probability distributions associated with the MFG equilibrium solution.
RO methods allow a treatment of uncertainty in large scale models which
remains numerically tractable. The coupling will need cobweb style adjust-
ments of price schedules, mimicking the utility virtual reaction to a sequence
of announced demand responses. To keep our development centered on the
issue of representing demand response e↵ects and for the sake of brevity, we
have decided to skip the consideration of uncertainty due to intermittency
of VRE technologie, like wind and solar, due to varying weather conditions.
In a forthcoming paper we will show how this analysis can be extended to
an S-adapted game framework [21] where the players use strategies that are
adapted to the unfolding of di↵erent possible weather scenarios.

The rest of the paper is organized as follows. In Section 2, we revisit the
linkage of ETEM-SG with a (deterministic) Wardrop equilibrium model of
prosumers behavior and we propose a procedure for coupling the two models.
In Section 3 a Robust Optimization version of ETEM-SG is described. As
explained earlier, it is based on first analyzing a collection of MFG based
prosumer equilibria at each node of the network. The results of this analysis
help characterize a Robust Optimization program at the ETEM level. A
heuristic coupling procedure is then proposed to modify the pricing scheme
of the prosumers so that their aggregate MFG behavior is consistent with the
characteristics of the nodal demands expected by the ETEM-SG program.
In both sections a numerical illustration is provided using an ETEM-SG
model calibrated on the Leman region in Switzerland as described in [4, 5].
In section 4 we conclude and summarize the contribution of this work, which
is essentially methodological.
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2 A game theoretic approach to strategic battery

charging in a deterministic setting

2.1 ETEM-SG

ETEM-SG4 is a capacity expansion model used to describe technology choices
and investment programs for regional power systems over the long term
(time horizon of 50 years or more) under stringent environmental constraints
(e.g. satisfying Paris-agreement goals). It is used typically to assess energy
transition policies with massive variable renewable energy (VRE) penetra-
tion 5 . ETEM-SG includes dispatch and power flow submodels to take into
account transmission and distribution constraints and evaluate time of use
nodal marginal costs (TUNMC) for a set of typical days. Due to the general-
ization of smart grid technologies permitting two way communications, the
dispatch model could also include, at distribution level, a representation of
demand response (e.g., PHEV strategic charging), grid storage and contri-
bution to reactive power compensation. The use of these distributed energy
resources (DER) will be driven by market equilibria triggered by dynamic
pricing schemes implemented by power utilities. A first attempt to include
these features in the model is described in [4, 5] where it is shown that the
demand response, e.g. for strategic charging of PHEVs, could be described
as the result of a Wardrop equilibrium [20]. Under the assumption that the
pricing scheme used by the utility is based on TUNMC and that the users
are simply cost minimizers it has also been shown that a global linear pro-
gram could describe this equilibrium as a DER co-optimization process (see
[4]). In the rest of this section we develop in more details the game theoretic
approach for representing strategic charging of PHEV in ETEM-SG, and we
apply it in a more general setting, which no longer allows a simple solution
through linear programming.

2.2 Toward a dynamic locational pricing scheme for battery

charging

In smart grid systems, the prosumers behavior will be driven through the
dissemination on the transmission and distribution networks of dynamic
(time of use) prices. Wholesale electricity pricing in the age of massive
renewable penetration is an active area of applied research, see e.g. [25].

4Energy-Technology-Environment-Model with Smart-Grid
5 It is currently used to assess the possible transition to 100% renewable energy in

non-interconnected regions (typically islands and remote territories) in France.
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Wholesale electricity markets in the United States follow the principles of
bid-based, security-constrained, economic dispatch with locational marginal
prices. These principles could be adapted to markets for reserve in renewable
intensive energy systems [11]. In this subsection we recall the simplest way
to obtain locational marginal prices and we propose an “ad hoc” dynamic
pricing scheme for PHEV charging, which exploits the locational marginal
prices information.

2.2.1 The optimal dispatch subproblem and its dual solution

For a given point in time, the system operator dispatches the committed
units so as to minimize the total operational cost. Assume that the gener-
ation costs are piecewise linear and denote the vector of nodal generation
annualized costs by c

Gen

.

Assumption 1 Consider a transmission network with N
b

nodes (or buses)
linked by L lines described by the following variables and parameters:

y
n

: Net power injection at node n = 1, . . . , N
b

; y is the N
b

vector with
elements y

n

.

z
`

: Flow along line ` = 1, . . . , L; z is the L vector with elements z
`

.

Ā: Network incidence matrix L⇥N
b

, with a
`,n

= 1 if line ` originates from
n, a

`,n

= �1 if line ` terminates on n, a
`,n

= 0 otherwise. Note that
the sum of the columns of A is always equal to the the null column.

A: An L⇥ (N
b

� 1) matrix obtained by removing a column corresponding to
the swing bus6 in the matrix Ā.

S: An L ⇥ L diagonal matrix, S = diag(S
1

, . . . ,S
L

), where S
l

is the sus-
ceptances7 vector of line l .

Assume that the demand schedule for PHEV charging is fixed, and defined
exogenously.

6Usually the swing bus is numbered 1 for the load flow studies. This bus sets the angular
reference for all the other buses. Since it is the angle di↵erence between two voltage sources
that dictates the real and reactive power flow between them, the particular angle of the
swing bus is not important.

7In electrical engineering, susceptance (B) is the imaginary part of admittance. The
inverse of admittance is impedance and the real part of admittance is conductance. In SI
units, susceptance is measured in siemens.
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In order to remain within a linear programming framework, it is typical to
model power flows using linearized equations8 can be written as

z = SA✓, (1)

where ✓ is the (N
b

�1)-vector of angles at the di↵erent nodes (buses). Since
y = AT z, and by introducing ATSA, one gets:

z = SA(ATSA)�1y, (2)

which can be rewritten
z =  y, (3)

where  is now called the injection shift factor matrix.
The nodal prices are obtained as the dual variables in an optimal dispatch

problem under constraints of capacity of the generators and transmission
network as shown by Ruiz et al. [28, 29, 30] or Stiel [31].

The distribution of power in the di↵erent lines of the transmission net-
work is given by Eq. (2) which we rewrite as follows

P
f

=  (P
Gen

� P
Load

), (4)

where P
f

= z is the vector of power flows on each line of the network and
P
Gen

� P
Load

= y is the vector of net power injection (generation power
P
Gen

minus load P
Load

) at each bus (node) of the network.
Notice that at each bus node n, P

Load

(n) is the sum of conventional (non-
flexible) and flexible (in our case PHEV charging denoted �(n, ⌧) above)
loads.

The transmission sensitivity matrix  = SA(ATSA)�1, also known as
the injection shift factor matrix, gives the variations in flows due to changes
in the nodal injections. The shift factor matrix is a function of the charac-
teristics of the transmission elements and of the state of the transmission
switches.

At each time-slice ⌧ , if the demands P
Load

are exogenously defined the
economic dispatch is formulated as a linear program which is summarized
as follows:

min
PGen

cT
Gen

P
Gen

, (5)

8 This power flow model corresponds to the Approximate DC flow where Power flow
obeys Kircho↵’sb voltage law, reactive power is ignored and phase angle di↵erences are
small and per unit voltages are set to 1.

7



under the following set of constraints (with the associated dual variables
indicated on the RHS):

1T
Nb

(P
Gen

� P
Load

) = 0 (�) (6)

P
f min

  (P
Gen

� P
Load

)  P
f max

(µ
min

, µ
max

) (7)

P lo

Gen

 P
Gen

 P up

Gen

, (�
min

, �
max

) (8)

where 1
Nb stands for an N

b

vector whose components are all equal to 1.
The constraint (6) ensures the total load-generation balance, (7) enforces
the flow limits on transmission elements and flowgates where lower limits
usually represent the limit in the opposite flow direction, and (8) models the
lower and upper generation limits.

Remark 1 As is usually the case for dispatch models, we do not con-
sider ramping constraints that would introduce an additional dynamic aspect.
These constraints are taken into account in the so called unit commitment
models (see e.g. [18]) that operate at a finer and faster time scale.

It has thus been proved that, under Assumption 1 the following holds true
(see [30] for details)

Lemma 1 The nodal marginal cost vector $ is then given by

$ = �(� 1+ T (µ
max

� µ
min

)). (9)

Proof. Apply duality theory.
In addition, we assume that the TUNMCs will serve as a basis for deter-

mining an e�cient dynamic pricing scheme. However since P
Load

is partly
defined by the behavior of prosumers (the owners of PHEVs deciding in-
dependently when to recharge their batteries), there will be a linking to
establish between the linear program describing the optimal dispatch, with
the computation of marginal nodal prices, and a Wardrop equilibrium model
involved in the definition of P

Load

.

2.3 Wardrop equilibrium induced by nodal marginal prices

To simplify the analysis, we assume that at each node of the transmission
grid, also called a bus node, there is a single distribution line to which a
set of m

n

PHEV batteries are connected.

Assumption 2 We assume that at each node n, the population of PHEVs
is homogenous, composed of m

n

identical small users j = 1, 2, . . . ,m
n

, where
m

n

is large enough to consider that each prosumer is infinitesimal.
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Remark 2 Assuming homogeneity of PHEV users may seem very restric-
tive for a standard dispatch model. However our dispatch model is part of
a larger scale energy model. It is standard practice in these global energy
models to represent demand devices, like e.g. private cars by one (or a few)
typical technology model that is replicated for the whole population of users.
For the sake of simplifying the exposition, we have opted for a single class of
PHEVs. The approach could easily accommodate several types of electrical
vehicles.

Assume also that the utility will drive the demand for charging the
PHEVs batteries by implementing a dynamic pricing scheme where the per
car average demand for charging a↵ects the price at di↵erent nodes n and
time-slices of the day. Such a scheme is for example assumed in the semi-
nal paper [26] proposing decentralized control for the charging of electrical
vehicles.

Assumption 3 The utility will adopt a dynamic pricing scheme for battery
charging defined as

p(n, ⌧ ;D(⌧),�(⌧)) = $(n, ⌧)(1 + c
1

(�(⌧)�D(⌧))/N), ⌧ 2 T . (10)

Here $(n, ⌧) is the nodal marginal cost, for time slice ⌧ , that has been com-
puted from the optimal dispatch model, run with a set of “target” charging
demand d(n, ⌧) for all nodes n and time slices ⌧ . �(⌧) is the total demand
for charging at time-slice ⌧ , D(⌧) is the total “target” charging demand envi-
sioned in the optimal dispatch, at time-slice ⌧ and N =

P
n

m
n

is the total
number of batteries in the whole population. In (10) the parameter c

1

is
calibrating the slope of this inverse demand curve. With this pricing scheme
the price increases when real demand exceeds the target and decreases when
real demand is lower than the target.

Remark 3 Notice that this pricing mechanism incorporates both the im-
pact of the transmission network (it is based on nodal marginal cost $(n, ⌧))
and the discrepancy between the per car average demand for battery charg-
ing resulting from prosumers decisions �(⌧)/N and the one that would be
preferred by the utility, i.e., D(⌧)/N . In our formulation of the linking prob-
lem, the target demands should be, at equilibrium, the ones that have served
to compute the nodal marginal costs. Therefore, at equilibrium, the prices
will be equal to nodal marginal costs, an interesting property for the pricing
scheme (10). Notice also that we could have chosen a price mechanism
where the per car average demand at each node and not the global per car
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average demand is considered. Such a scheme would reduce the interdepen-
dency of the population of prosumers.

We denote

�(n, ⌧): The demand for charging PHEVs connected at time-slice ⌧ at the
low voltage distribution line linked with bus node n, that will be de-
cided by the prosumers.

�
�n

(⌧): The vector of expected demands for charging PHEVs connected
at time-slice ⌧ at the low voltage distribution lines linked with all other
bus nodes (di↵erent from n).

Since
�(⌧) = 10�

�n

(⌧) + �(n, ⌧),

the dynamic pricing scheme (10) is linking together all the PHEV users.
To emphasize this point, we shall rewrite the price schedule at node n as
p(n, ⌧ ; �(n, ⌧),�

�n

(⌧)) , i.e. a function of �(n, ⌧), the total charging demand
at node n and �

�n

(⌧), the vector of all charging demands at other nodes of
the network.

At initial time ⌧ = 0 the state of charge of a generic battery at node n
is xo. The evolution of the state of charge of battery j is described by the
following state equation

x
j

(n, ⌧ + 1) = x
j

(n, ⌧) + �
j

(n, ⌧)� T
j

(n, ⌧), (11)

where �
j

(n, ⌧) is the charging energy and T
j

(n, ⌧) is the exogenously defined
energy discharged at time ⌧ due to transport service provided by the PHEV
linked to node n. Assume a PHEV user has a utility criterion for the use
of the car battery, which it strives to maximize. It is defined as the sum of
utilities of charge levels at each time-slice, u

j

(⌧, x
j

(n, ⌧)) minus the cost of
the charging at each time-slice.

For a given price schedule p(n, ⌧ ; �(n, ⌧),�
�n

(⌧)), a PHEV user j, be-
having noncooperatively, solves a best response optimal control problem,
with control variable �

j

in state equation (11) and criterion

max
X

⌧

(u
j

(⌧, x
j

(n, ⌧))� p(n, ⌧ ; �(n, ⌧),�
�n

(⌧))�
j

(n, ⌧)), (12)

with end-point conditions

x
j

(n, 0) = xo
j

(13)

x
j

(n, T ) = xo
j

. (14)
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These boundary conditions state that at the end of each day the state of
charge of the battery should be back at the level which is desired at the
beginning of the day.

To write the optimality condition, introduce the Hamiltonian

H
j

(x
j

(n, ⌧),�
j

(n, ⌧ + 1), �
j

(n, ⌧)) = u
j

(⌧, x
j

(n, ⌧))

�p(n, ⌧ ; d(n, ⌧),�
�n

(⌧))�
j

(n, ⌧)

+�
j

(n, ⌧ + 1) (�
j

(n, ⌧)� T
j

(n, ⌧)) ,

where �
j

(n, ⌧+1) is the costate or adjoint variable associated with the state
equation (11).

The optimality conditions, for ⌧ 2 T and n 2 N , given by the maxi-
mum principle of optimal control, are obtained from the derivatives of the
Hamiltonian. First we write the complementarity conditions for the decision
variable (open-loop strategy) of Player j:

�
j

(n, ⌧) � 0, (15)

p0
�

(n, ⌧ ; �(n, ⌧),�
�n

(⌧))�
j

(n, ⌧)

+ p(n, ⌧ ; �(n, ⌧),�
�n

(⌧))� �
j

(n, ⌧ + 1) � 0, (16)

�
j

(n, ⌧)(p0
�

(n, ⌧ ; �(n, ⌧),�
�n

(⌧))�
j

(n, ⌧)

+ p(n, ⌧ ; �(n, ⌧),�
�n

(⌧))� �
j

(n, ⌧ + 1)) = 0. (17)

Then we write the complementarity conditions for the state variable

x
j

(n, ⌧) � 0, (18)

�
j

(n, ⌧ + 1)� �
j

(n, ⌧) +5
x

u
j

(⌧, x
j

(n, ⌧)) � 0, (19)

x
j

(n, ⌧)(�
j

(n, ⌧ + 1)� �
j

(n, ⌧) +5
x

u
j

(⌧, x
j

(n, ⌧))) = 0, (20)

x
j

(n, 0) = x
j

(n, T ) = xo. (21)

Assume that at each node n the population of PHEVs is homogenous,
composed of m

n

identical small users j = 1, 2, . . . ,m
n

, where m
n

is large
enough to consider that each prosumer is infinitesimal. The total charging
demand resulting from the m

n

users choosing their charging schedule under
a Nash equilibrium condition, is given by

�(n, ⌧) =
mnX

j=1

�
j

(n, ⌧)
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and the total charges of all batteries connected to node n is given by

x(n, ⌧) =
mnX

j=1

x
j

(n, ⌧).

Similarly define the global discharge for transport service

T (n, ⌧) =
mnX

j=1

T
j

(n, ⌧).

Then the Nash equilibrium conditions (15–21) can be rewritten at the global
level as follows, for ⌧ 2 T and n 2 N ,

�(n, ⌧) � 0, (22)

p0
�

(n, ⌧ ; �(n, ⌧),�
�n

(⌧))

m
n

�(n, ⌧)

+ p(n, ⌧ ; �(n, ⌧),�
�n

(⌧))� �(n, ⌧ + 1) � 0, (23)

�(n, ⌧)(
p0
�

(n, ⌧ ; �(n, ⌧),�
�n

(⌧))

m
n

�(n, ⌧)

+ p(n, ⌧ ; �(n, ⌧),�
�n

(⌧))� �(n, ⌧ + 1)) = 0, (24)

and

x(n, ⌧) � 0, (25)

�(n, ⌧ + 1)� �(n, ⌧)�m
n

5
x

u(⌧,
x(n, ⌧)

m
n

) � 0 (26)

x(n, ⌧)(�(n, ⌧ + 1)� �(n, ⌧)�m
n

5
x

u(⌧,
x(n, ⌧)

m
n

)) = 0 (27)

x(n, 0) = x(n, T ) = xo. (28)

Definition 2.1 A Wardrop equilibrium (WE) at node n is the equilibrium in
the limit game when m

n

! 1 while x(n, ⌧) =
P

mn
j=1

x
j

(n, ⌧) remains finite,

and m
n

5
x

u(⌧, x(n,⌧)
mn

)) ! 5
x

ũ(⌧, x(n, ⌧))), where the function ũ(⌧, x(n, ⌧)))

is the limit of m
n

u(⌧, x(n,⌧)
mn

)).

So, introducing the costate variable �(n, ⌧ + 1) associated with the state of
all the batteries connected to node n we have proved the following lemma
which characterizes the WE as the solution of a complementarity problem,
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Lemma 2 In a Wardrop equilibrium the total demand schedule for charging
PHEVs �(n, ⌧), the total state of charge schedule and the costate variables
are defined as the solution of the variational inequality (29)-(36), for ⌧ 2 T
and n 2 N .

�(n, ⌧) � 0 (29)

x(n, ⌧ + 1)� x(n, ⌧)� �(n, ⌧) + T (n, ⌧) = 0 (30)

x(n, ⌧ + 1) � 0 (31)

�(n, ⌧ + 1)� �(n, ⌧)�5
x

ũ(⌧, x(n, ⌧)) � 0 (32)

x(n, ⌧)(�(n, ⌧ + 1)� �(n, ⌧)�5
x

ũ(⌧, x(n, ⌧))) = 0 (33)

p(n, ⌧ ; �(n, ⌧),�
�n

(⌧)) + �(n, ⌧ + 1) � 0 (34)

�(n, ⌧)(p(n, ⌧ ; �(n, ⌧),�
�n

(⌧)) + �(n, ⌧ + 1)) = 0 (35)

x(n, 0) = x(n, T ) = xo. (36)

Proof. Pass to the limit in Equations (22)-(28), taking into consideration
that the terms

p0
�

(n, ⌧ ; �(n, ⌧),�
�n

(⌧))

m
n

will tend to 0.

Remark 4 Wardrop equilibria can be viewed as a Nash equilibrium solution
of a limit game. It has been shown [20] that they are closely related to com-
petitive market equilibria in economic theory, which are notoriously e�cient
[3]. In fact it is easy to check that the solution of the Pareto optimality prob-
lem where one maximizes the sum of utilities of all players (PHEV users)
by selecting optimally the total charging demand would lead a di↵erent set
of optimality conditions where the term

p0
�

(n, ⌧ ; �(n, ⌧),�
�n

(⌧))�(n, ⌧)

would appear in Eqs (34)-(35). However, in [4] it has been shown that a
Wardrop equilibrium describing the strategic charging of PHEVs would lead
to an e�cient solution if we stay in the realm of linear programming, that
is if the payo↵ of each user is minus the cost and the charging preferences
are described by linear constraints on the state of charge.

Remark 5 Notice that when we get in Subsection 3.2 below to the MFG
based analysis, a similar set up of an infinite number of infinitesimal agents
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will be adopted. The main di↵erence later is that the agents cannot be directly
lumped into a single macro agent because they will be considered individu-
ally stochastic while all agents in the Wardrop framework are identical and
deterministic. Thus the MFG framework is less restrictive.

2.4 Coupling the dispatch model and Wardrop equilibrium

at each node n

Let us first define the type of optimality condition we want to look for.

Definition 2.2 A charging program {�(n, ⌧) : n 2 N , ⌧ 2 T } is W -optimal
if, when introduced in ETEM-SG as target charging demands (D(⌧) : ⌧ 2 T )
it yields an optimal dispatch program with marginal nodal prices {$(n, ⌧) :
n 2 N , ⌧ 2 T }, such that the Wardrop equilibrium model with pricing
scheme (10), yield again the same charging program {�(n, ⌧) : n 2 N , ⌧ 2
T }.

According to this definition a W -optimal charging program is a fixed point
of the mapping which associates with a target charging demand a new “op-
timal” charging demand driven by the dynamic pricing scheme and the
Wardrop equilibrium behavior of the users. We propose the following scheme
to link the optimal dispatch of ETEM-SG with the WE constraints. For all
nodes n:

1. Start: with a given �0(n, ⌧), for example, assuming the utility has a
total control on demand. Then at iteration i:

2. Run ETEM-SG: with target charging demands d(n, ⌧) = �i(n, ⌧);
From the solution get the vector of nodal marginal costs $i(n, ⌧) for
⌧ = 0, . . . , T � 1 and the target charging demands D(⌧);

3. Run WE model: The Wardrop equilibrium model is run with a price
function p(n, ⌧ ;D(⌧),�(⌧)) as defined in (10) and get a new charging
demand �i+1(n, ⌧);

4. Check convergence: There is consistency between the two models
if |�i(n, ⌧) � �i+1(n, ⌧)| = 0. Then STOP, otherwise go to step (2)
with i = i+ 1.

Lemma 3 At convergence of the above linking procedure the Wardrop equi-
librium will be defined by the following complementarity conditions, for ⌧ 2
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T and n 2 N ,

�(n, ⌧) � 0 (37)

x(n, ⌧ + 1)� x(n, ⌧)� �(n, ⌧) + T (n, ⌧) = 0 (38)

x(n, ⌧ + 1) � 0 (39)

�(n, ⌧ + 1)� �(n, ⌧)�5
x

ũ(⌧, x(n, ⌧)) � 0 (40)

x(n, ⌧)(�(n, ⌧ + 1)� �(n, ⌧)�5
x

ũ(⌧, x(n, ⌧))) = 0 (41)

$(n, ⌧) + �(n, ⌧ + 1) � 0 (42)

�(n, ⌧)($(n, ⌧) + �(n, ⌧ + 1)) = 0 (43)

x(n, 0) = x(n, T ) = xo, (44)

where $(n, ⌧) is the nodal marginal cost obtained from the dispatch model
with charging demands �(n, ⌧) at each node.

Proof At convergence the target demands and the Wardrop equilibrium
demands are the same, hence the price reduces to $(n, ⌧) at each node and
time slice.

As a corollary to the above result, we see that a W -optimal charging
program is given by the solution of a global complementarity problem ob-
tained by appending to the linear complementarity problem associated with
the linear program of the dispatch, the nonlinear complementarity problem
(38)-(44).

2.5 A numerical illustration

To illustrate this procedure we use an ETEM-SG model calibrated for the
Leman region in Switzerland and described in [6]. For the sake of simplifying
the experiment, we considered a single bus node and we link the Wardrop
equilibrium model with a single typical day of winter 2050 that has 4 time-
slices corresponding to (1) morning; (2) afternoon; (3) evening and (4) night.
In 2050, the ETEM-SG run estimates that PHEVs will satisfy a third of the
mobility demand.

1. Initial run of ETEM-SG: In this run the only constraint on charging
is to provide the needed energy for satisfying the demand for mobility
of PHEVs. The result of the optimal dispatch indicates a charging of
49 TJ during the night time-slice and nodal marginal cost as indicated
in Table 1 below.
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Table 1: Nodal marginal cost in M$/PJ

Morning 0.32
Afternoon 0.47
Evening 0
Night 0

2. Run of the Wardrop equilibrium model: We now run theWardrop
equilibrium model with a price function as defined in (10). We assume
that the PHEV owners have a utility function depending on the charge
of the battery at each time-slice. More precisely, we assume that they
want to track a SOC profile as defined in Table 2 below,

Table 2: Target SOC (targ
soc

(⌧) at population level) in PJ

Morning 60
Afternoon 40
Evening 60
Night 10

with a utility function

ũ(⌧, x(⌧)) = �0.1(x(⌧)� targ
soc

(⌧))2. (45)

The charging demand resulting from the Wardrop equilibrium is ob-
tained, using GAMS with PATH algorithm, as shown in Table 3 below.

Table 3: Charging demand for Wardrop equilibrium �⇤(⌧) in PJ

Morning 3.11
Afternoon 7.05
Evening 0
Night 39.44
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3. Check convergence: We now run ETEM-SG with the additional
constraints (where n ⌘ 1)

d(n, ⌧) = c
2

�⇤(n, ⌧), (46)

with c
2

= 1. We observe that the marginal costs do not change.
Therefore the WE demand will remain the same and convergence has
been reached in two runs of ETEM-SG.

Remark 6 The very fast convergence of the procedure is due to the fact
that, in this example, the flexible load corresponding to electric vehicles is
relatively low; therefore this part of the demand has a limited influence on
the characterization of nodal marginal costs.

3 Modeling uncertain charging demand in a Ro-

bust ETEM-SG coupled with an FMG

In this section we extend the analysis to a stochastic framework for the
description of the charging dynamics for the population of PHEV users.
Indeed, the Wardrop based analysis assumes complete solidarity of the states
and demands of the vehicles. In reality, even for a homogeneous fleet of
vehicles , with identical initial states, the individual energy consumption will
di↵er in general from vehicle to vehicle and will exhibit some randomness.
We propose to introduce robust optimization to deal with uncertainty in
charging demand and to use an MFG model to represent the probability
distribution of charging demands resulting from demand response. In order
to simplify the exposition, we restrict the analysis to the case of a single bus
node.

3.1 A Robust ETEM-SG formulation

In ETEM-SG, the charging energy delivered at period ⌧ , denoted �(⌧) can
be uncertain. This is due to the fact that the population of PHEV users
is described by a distribution of the state of charge x(⌧) of the batteries at
each time slice ⌧ . The charging decision of a user i is defined by a state
feedback law ✓

i

(⌧,x(⌧)) and, therefore the demand for battery charging is
also random. The total charging energy to be delivered at period ⌧ , denoted
�(⌧) =

P
N

i=1

✓
i

(⌧,x(⌧)), is a random variable.
Consider a probability threshold ", for example " = 2.5%, and introduce

a lower bound for the charging demand at time-slice ⌧ based on the lower
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"-quantile �
`

(⌧), which is defined as follows

�
`

(⌧) = max {D : "  P [�(⌧)  D]} , ⌧ = 0, . . . , T � 1. (47)

Similarly, one can define an upper bound �
`

(⌧), based on the upper "-
quantile �

u

(⌧), which is defined as follows

�
u

(⌧) = min {D : "  P [�(⌧) � D]} , ⌧ = 0, . . . , T � 1. (48)

For total charging demand, the interval [�
`

(⌧),�
u

(⌧)] has probability 1�2",
i.e. 95% when " = 2.5%. We also record the average charging demand,
resulting from the MFG equilibrium at each time-slice ⌧ , which is denoted
�

a

(⌧).

Remark 7 If the distribution of state of charge is gaussian and the feed-
back charging control is linear, then the distribution of each random variable
✓
i

(⌧,x(⌧)) is also gaussian. In that case the quantiles are proportional top
N &(⌧) where &(⌧) is the standard deviation in the distribution of the charg-

ing demand for a representative vehicle in the MFG.

Introduce the random lower and upper bounds that are defined as follows

�̃
`

(⌧) = �
`

(⌧) + (�
a

(⌧)��
`

(⌧))⇠
`

(⌧) (49)

and
�̃

u

(⌧) = �
u

(⌧)� (�
u

(⌧)��
a

(⌧))⇠
u

(⌧), (50)

where ⇠
`

and ⇠
u

are sets of random variables with the following weak as-
sumption.

Assumption 4 The random factors ⇠
`

(⌧) and ⇠
u

(⌧) are independent ran-
dom variables, with common support [0, 1] and known means E(⇠

`

(⌧)) =
µ
`

(⌧)  1

2

and E(⇠
u

(⌧)) = µ
u

(⌧)  1

2

. Using these definitions, for each

time-slice ⌧ the lower bound �̃
`

(⌧) ranges in [�
`

(⌧),�
a

(⌧)] and upper bound
�̃

u

(⌧) is taking values in [�
a

(⌧),�
u

(⌧)].

Now we move to worst case analysis; for that purpose we introduce
polyhedral uncertainty sets for ⇠

`

and ⇠
u

defined as follows

⌅
`

= {⇠
`

| ⇠
`

(⌧) 2 [0, 1], 8⌧ ; ||⇠
`

||
1

 k
`

}, (51)

and
⌅
u

= {⇠
u

| ⇠
u

(⌧) 2 [0, 1], 8⌧ ; ||⇠
u

||
1

 k
u

}, (52)
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where ||⇠
u

||
1

=
P

⌧

|⇠
u

(⌧)|, ||⇠
l

||
1

=
P

⌧

|⇠
l

(⌧)| and k
`

and k
u

are user coef-
ficients limiting the number of random variables taking their worst values
simultaneously. Each uncertainty set contains a subset of possible realiza-
tions of the uncertainty parameters to be considered in our analysis. Then,
one has to look for an optimal solution that remains feasible for all real-
izations within this uncertainty set, in other words one applies a robust
optimization technique [9] on the uncertain lower and upper constraints for
the whole set of time-slices T .

T�1X

⌧=0

�
`

(⌧) + (�
a

(⌧)��
`

(⌧))⇠
`

(⌧) 
T�1X

⌧=0

�(⌧), 8⇠
`

2 ⌅
`

(53)

and

T�1X

⌧=0

�
u

(⌧)� (�
u

(⌧)��
a

(⌧))⇠
u

(⌧) �
T�1X

⌧=0

�(⌧), 8⇠
u

2 ⌅
u

. (54)

Based on duality theory, Propositions 1 and 2 show that equations (53) and
(54) are equivalent to a set of linear equations.

Proposition 1 Under Assumption 4, the condition that there exist positive
variables u

`

2 R|T | and v
`

such that the set of deterministic inequalities

T�1X

⌧=0

�
`

(⌧) + (�
a

(⌧)��
`

(⌧))µ
`

(⌧)

+
T�1X

⌧=0

u
`

(⌧)(1� µ
`

(⌧)) + v
`

r
T

2
ln(

1

✏
) 

T�1X

⌧=0

�(⌧), (55)

u
`

(⌧) + v
`

� �
a

(⌧)��
`

(⌧), ⌧ = 0, . . . , T � 1, (56)

is satisfied, guarantees that constraints (53) are satisfied with probability
(1� ✏).

Proposition 2 Under Assumption 4, the condition that there exist positive
variables u

u

2 R|T | and v
u

such that the set of deterministic inequalities

T�1X

⌧=0

�
u

(⌧)� (�
u

(⌧)��
a

(⌧))µ
u

(⌧)

�
T�1X

⌧=0

u
u

(⌧)(1� µ
u

(⌧))� v
u

r
T

2
ln(

1

✏
) �

T�1X

⌧=0

�(⌧), (57)

u
u

(⌧) + v
u

� �
u

(⌧)��
a

(⌧), ⌧ = 0, . . . , T � 1, (58)
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is satisfied, guaranties that constraints (54) are satisfied with probability
(1� ✏).

Propositions 1 and 2 are special cases of a more general theorem from
[9] that is proved in [7] and given in Appendix 5.1. These new constraints
of Propositions 1 and 2 have to be introduced in ETEM-SG with ✏ = 0.05
in order to insure a satisfaction of 95% for Constraints 53 and 54. We set
µ
`

= µ
u

= 1/2

Remark 8 This robustification approach has been chosen for its simplicity
of implementation. Ultimately though, it would be desirable to approximate
chance constraints using appropriate uncertainty sets based, e.g., on CVar
[32]. In our approach, lower and upper bounds are uncertain and the model
is hedging the risk associated to the worst bound realizations within an un-
certainty set. Because variations in (49) and (50) are such that the worst
case for each bound individually is at the mean value, the constraints are
always feasible. By introducing a robust constraint on the sum of the nodal
demands, one takes into account that the worst cases for di↵erent time-
slices could not occur together with a significant probability. This approach
has already been applied in several integrated assessment models [7, 6, 27].

3.2 An MFG model for battery charging

Let us define precisely the MFG model for battery charging used for deter-
mining the distribution of the random charging demand driven by a TOU
pricing. Broadly speaking, an MFG is a stochastic game with the follow-
ing feature; infinitely many indistinguishable players that are interacting
through the empirical distribution of the states and/or controls (as it is in
our case), of all players. Since the players are indistinguishable, every player
can be seen as a generic (or representative) player. Thus the MFG analysis
is characterized by the strategic behaviour of a generic agent. By construc-
tion, MFG equilibria constitute Nash equilibria for infinite-limit version of
large population games with homogeneous players in weak interaction of
so-called mean-field type, i.e. depending only on agent state and input em-
pirical distribution. An example of such games is studied here, where the
large population of PHEVs interacts dynamically only through the energy
price. This interaction is indeed weak (i.e., in an infinite population each
PHEV is una↵ected by the change in the demand of any other particu-
lar PHEV) and of mean-field type (interaction through empirical mean of
charging demand only). The applicable aspect of MFG equilibria is their
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use, albeit under appropriate conditions to be established on a case by case
basis, as Approximate Nash Equilibria for any corresponding finite version
of the large population games considered. This turns out to be a particu-
larly interesting feature in situations where exact Nash equilibria can not be
computed in finite population games. Moreover, crucially, the Approximate
Nash equilibria derived from MFG equilibria, exhibits vanishing unilateral
deviation gains as the size of the population of players grows to infinity. Pre-
cisely, when the Approximate Nash equilibria is implemented, the following
is guaranteed: Any player might improve its performance by deviating uni-
laterally from the equilibria, however the performance gain it can achieve
converges to zero as the number of players in the population goes to infin-
ity. Thus, we recover in the infinite-limit version population game (when
size of the population is infinite) that the MFG equilibria are indeed Nash
equilibria (since any unilateral deviation is faced with a zero performance
gain).

Convergence of Nash Equilibria of large population games to correspond-
ing MFG equilibria as the players become infinitesimal is well understood
only when the MFG equilibria are unique and the individual feedback best-
response function (which is in general a function of the associated Mean
Field) is su�ciently smooth. We assume that these conditions are satisfied
is this simple instance of MFG solution.

3.2.1 The dynamic pricing scheme

We consider a typical day as time horizon (e.g. the four time slices associated
with a typical day T = {⌧

1

, ⌧
2

, ⌧
3

, ⌧
4

}), a network with a single node (i.e
N = {1}) with N PHEVs charging their batteries at that single node (i.e
m

1

= N). We further assume that these N PHEVs are indistinguishable
in their strategic charging behaviour. With these assumptions, the price
scheme (10), reads as follows : 8⌧ 2 T

p(1, ⌧ ;D(⌧),�(⌧)) = $(1, ⌧)(1 + c
1

(�(⌧)�D(⌧))/N),

= $(1, ⌧)

✓
1 + c

1

✓P
N

j=1

⇥
�
j

(n, ⌧)� d
j

(n, ⌧)
⇤

N

◆◆
.

Under the exchangeability assumption, it makes sense to have the same
target demands of all the charging PHEVs resulting from the most current
computation of the ETEM-SG program, i.e consider d(1, ⌧) such that

d
j

(1, ⌧) = d(1, ⌧), 8⌧ 2 T .
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This has the following consequence : 8⌧ 2 T

p(1, ⌧ ;D(⌧),�(⌧)) = $(1, ⌧)

✓
1 + c

1

✓P
N

j=1

�
j

(1, ⌧)� d
j

(1, ⌧)

N

◆◆
,

= $(1, ⌧)

✓
1 + c

1

✓P
N

j=1

�
j

(1, ⌧)

N
� d(1, ⌧)

◆◆
,

Finally, setting the calibration constant c
1

, to be equal to 1

d(1,⌧)

, we obtain,

p(1, ⌧ ;D(⌧),�(⌧)) =
$(1, ⌧)

d(1, ⌧)

✓P
N

j=1

�
j

(1, ⌧)

N

◆
, 8⌧ 2 T . (59)

Remark 9 Observe that the price function (59) obtained, under mild as-
sumptions, from the price function (10) maintains a fundamental feature.
That is, the price function is equal to the nodal price, whenever the total
realized strategic demand coincides with the total target demand. Indeed,

8⌧ 2 T , p(1, ⌧ ;D(⌧),�(⌧)) = $(⌧) () �(⌧) = D(⌧).

Given this price function, the charging strategies of the batteries are coupled,
thus their realized strategic demands form a Nash equilibrium. We denote
this equilibrium by {�⇤

j

(1, ⌧), 8j = 1, ..., N, 8⌧ 2 T }. The associated price at
equilibrium is given by

p(1, ⌧ ;D(⌧),�(⌧)) =
$(1, ⌧)

d(1, ⌧)

✓P
N

j=1

�⇤
j

(1, ⌧)

N

◆
, 8⌧ 2 T .

This price can be stochastic for any finite N . However, as N �! 1, the
price becomes deterministic since, by the law of large numbers applied to
excheangable demands, it holds that the empirical average of such stochastic
demands converges to some deteministic demand, denoted {�̄⇤(1, ⌧), ⌧ 2 T }.
That is, 8⌧ 2 T ,

P
N

j=1

�⇤
j

(1, ⌧)

N
�! �̄⇤(1, ⌧), as N �! 1.

We now describe how this price formulation allows linking the RO disptach
model to the MFG model, when N �! 1. In the MFG model, at equilib-
rium, the average demand of the batteries, is deterministic and denoted by
ū := (ū

t

)
t2[0,T ]

. And the instanteneous price function

p
t

(ū) := �
1

(t)ū
t

+ �
0

, 8t 2 [0, T ],
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where �
1

: [0, T ] 7! [0,+1), �
0

is a positive constant. Thus, the RO dispatch
model is coherent with the MFG model when :

�
0

= 0, �
1

(t) :=
w̄(1, t)

d(1, t)
8t 2 [0, T ],

where (w̄(1, t))
t2[0,T ]

and (d(1, t))
t2[0,T ]

, are the continuous versions9 of nodal
price and the target demand at time t 2 [0, T ].

3.2.2 MFG Formulation

The MFG model for the continuum of batteries charging, is defined in the
following two step formulation :

(i) (Strategic Optimization of a generic PHEV/battery) Find a charging
policy u⇤ 2 A, such that

J(u⇤, ū) = min
u2A

J(u, ū), (60)

where,

J(u, ū) := E

 Z
T

0

✓
u
t

p
t

(ū) +
q

2
(X

t

� a
t

)2
◆
dt+

q̄

2
(X

T

�X
0

)2
�

+ E

 Z
T

0



2
(u

t

)2dt

�

with, X = (X
t

)
t2[0,T ]

, the evolution for the state of charge (SOC for
short) of a generic PHEV/battery. Its dynamics are prescribed by the
SDE below : 8t 2 [0, T ],

X
t

= x
0

+

Z
t

0

(u
r

� ⌫
r

)dr + ✏W
t

, L(x
0

) = N (a
0

, s2). (61)

The following parameters, assumed to be known and given ; ⌫ =
(⌫

t

)
t2[0,T ]

being the rate of discharge of a generic battery, a = (a
t

)
t2[0,T ]

the SOC profile from which the generic PHEV/battery derives maxi-
mum utility, and q̄, q,, ✏, s positive constants used to model the strate-
gic charging behaviour of a generic battery and its initial SOC distri-
bution. The input quadratic regulation term, insures a unique solv-
ability of the best response of the agents, which in turn, allows for

9Note that, to obtain time continuous versions of the nodal price and target charging
demand at a generic node, we consider spline approximations along the time slices.
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the existence of a convergent numerical resolution of the MFG model.
Also, the terminal cost parameter q̄ must be chosen large enough, so
as to enforce the end-point conditions for the batteries SOC, in the
RO Dispatch model.

(ii) (Equilibrium Condition) Observe that the optimizer u⇤ := (u⇤
t

)
t2[0,T ]

found above actually depends on the mean field input ū. To assert
that ū is in an MFG equilibrium, one verifies that ū, indeed, coincides
with the mean of the realized strategic charging demand of a generic
PHEV/battery. That is, we check that (ū)

t2[0,T ]

satisfies the following
fixed point condition ; for all t 2 [0, T ],

ū
t

:= E[u⇤
t

(ū)]. (62)

We say that the MFG model (60-62) has a solution if there is a process,
(u⇤

t

, ū
t

)
t2[0,T ]

satisfying the fixed-point condition described above. We call
this process, an MFG equilibrium.

The MFG defined above is a classical Linear Quadratic MFG, a general-
ization of this model involving equilibrium through quantiles (and not just
the mean) has been studied in [17]. Furthermore, it is well known, that the
MFG equilibria are characterized by coupled systems of Hamilton-Jacobi
Bellman (HJB for short) and Fokker-Planck (FP for short) Equations. One
of the particularities of this system of coupled PDEs is that they are of
Forward-Backward nature. Indeed, the HJB equation has a terminal condi-
tion while the FP equation has an initial condition. The coupled system of
HJB-FP are also simply called the MFG equations.

From the MFG first step, assuming m(t, x) is the density of the generic
battery demand distribution, we obtain a value fonction for the control
problem, denoted v(t, x), given as the solution to the HJB equation below :
8t 2 [0, T ],

@
t

v(t, x) +
✏2

2
@2

xx

v(t, x) + inf
u

{(u� ⌫
t

)@
x

v(t, x) + up
t

(ū) +


2
u2}

= �q(x� a
t

)2

2
, v(T, x) = 0,

with the optimal demand, given by a feedback policy :

✓(t, x) := �@
x

v(t, x) + p
t

(ū)


, 8t 2 [0, T ].
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This optimal charging behaviour induces an FP equation for m(t, x),
given below : 8t 2 [0, T ]

@
t

m(t, x) � ✏2

2
@2

xx

m(t, x)� @
x


m(t, x)

✓
p
t

(ū) + @
x

v(t, x)


+ ⌫

t

◆�
= 0,

m(0, x) =
1p
2⇡s2

exp

✓
� (x� a

0

)2

2s2

◆
.

Finally, the equilibrium condition reads as follows : 8t 2 [0, T ],

ū
t

=

Z
✓(t, x)m(t, x)dx = �

Z
p
t

(ū) + @
x

v(t, x)


m(t, x)dx. (63)

Regrouping these coupled PDEs together, we obtain the following MFG
equations for the resolution of our MFG model (60-62) : 8t 2 (0, T )

@
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2
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v(T, x) = 0, m(0, x) =
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◆
,

ū
t

= �
Z

p
t

(ū) + @
x

v(t, x)


m(t, x)dx, 8t 2 [0, T ].

3.2.3 Solvability of the MFG equations

The following theorem establishes the equivalence between the solvability
of our MFG model and the solvability of a system of deterministic Forward
Backward Ordinary Di↵erential Equations (FBODEs). The proof of the
theorem can be found in [17].

Theorem 1 There exists an MFG equilibrium (u⇤
t

, ū)
t2[0,T ]

to the MFG
model (60-62) if and only if there exists a solution (⌘

t

, w
t

,�
t

, ū)
t2[0,T ]

to
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the system of FBODEs below :

d⌘
t

dt
=

⌘2
t


� q, ⌘

T

= q̄, (64)

dū
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T

. (67)

The time dependent coe�cients are defined as ; 8t 2 [0, T ],
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Moreover, the feedback control policy defining the MFG equilibrium control,
is given by

u⇤
t

= ✓(t,X⇤

t

) := �⌘
t

X⇤

t

+ �
t

+ p
t

(ū)


, 8t 2 [0, T ], (68)

where the MFG equilibrium state of charge, is the unique solution to the
stochastic di↵erential equation (SDE) bellow : 8t 2 [0, T ],

X⇤

t

= x
0

+

Z
t

0

(✓(t,X⇤

t

)� ⌫
r

)dr + ✏W
t

, L(x
0

) = N (a
0

, s2). (69)

The FBODEs above have been shown to have a unique solution under mild
technical assumptions [17]. Thanks to the quadratic regulation, the MFG
model is guaranteed to have a unique solution (u⇤

t

, ū
t

)
t2[0,T ]

, which is given
explicitly by Theorem 1. A classical Euler Scheme is used to solve numeri-
cally the system of ODEs (64 - 67).

Then, these numerical solutions are averaged over 4 time slices in T , in
order to obtain the mean demand of a generic battery at MFG-equilibrium,
denoted {ū

⌧

, ⌧ 2 T }. Note that one also gets from Theorem 1 the dynam-
ics for the variance of the generic battery’s demand at MFG-equilibrium. i.e

v
t

= V[u⇤
t

], 8t 2 [0, T ],
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where 8t 2 [0, T ],

dv
t

dt
=

✓
✏2⌘2

t

2
� 2q

⌘
t

v
t

◆
, v

0

=
s2⌘2

0

2
. (70)

Since the stochastic stategic demand of a generic battery at MFG-equilibrium
can be shown to be normally distributed for all times t 2 [0, T ] (see 68- 69),
prescribing its mean and variance is enough to characterize its distribution.
Again, the classical Euler Scheme is used to solve numerically ODE (70) and
the solution is averaged over the four time-slices in T , to yield {v

⌧

, ⌧ 2 T }.
For the coupling procedure, given nodal prices from the RO dispatch model,
the MFG model is numerically solved and yields the quantities

{(ū
⌧

, v
⌧

), ⌧ 2 T }, (71)

which are in turn, used to build new uncertainty sets for the RO Dispatch
model’s next run. This coupling procedure is precisely described below.

3.3 A coupling procedure

Definition 3.1 A charging strategy u⇤
t

:= ✓⇤(⌧,x⇤(⌧)) is MFG-optimal in
ETEM-SG-Robust, if the charging demand confidence intervals defined from
(71), the mean and variances of the MFG-equilibrium stochastic demand,
as in (49)-(58) yield a robust optimal program with marginal nodal prices
{$(n, ⌧) : n 2 N , ⌧ 2 T }, for which the MFG equilibrium model with pricing
scheme (10), produces again the same charging strategy u⇤

t

:= ✓⇤(⌧,x⇤(⌧)).

The coupling procedure is summarized as follows:

1. Start running ETEM-SG and get a global target charging demand
D(⌧) and nodal (in our case a single node) marginal cost $(1, ⌧) for
⌧ = 0, . . . , T � 1;

2. Run MFG with a price function built from $(1, ⌧) and d(1, ⌧) =
D(⌧)

N

and get a probability distribution parameters {ū
⌧

, v
⌧

, 8⌧ 2 T },
for the person-by-person optimal charging policy at MFG-equilibrium,
denoted u⇤

⌧

= ✓⇤(⌧,x⇤(⌧)), 8⌧ 2 T ;

3. Define robust constraints (53)-(54) and individual bound constraints,
and run ETEM-SG with these constraints; if the $(⌧) or D(⌧) do not
change STOP; otherwise return to Step 2.

By Definition 3.1 we can claim the following
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Proposition 3 Under Assumption 4 with dynamic price scheme (59), if
convergence is reached in the procedure described above, then the charging
strategy is MFG-optimal in ETEM-SG.

3.4 A numerical illustration

As for the deterministic case, we illustrate this procedure using the ETEM-
SG model calibrated for the Leman region in Switzerland and the MFG
algorithm described in [17].

1. Initial run of ETEM-SG: As for the deterministic case, the result
of the optimal dispatch indicates a charging of 49 TJ during the night
time-slice and nodal marginal cost as indicated in Table 1.

2. Run of the MFG equilibrium model: We now run the MFGmodel
with a cost function as defined in (61). We assume that the PHEV
owners have a utility function depending on the charge of the battery
at each time-slice. More precisely, we assume that they want to track a
SOC profile as defined in Table 2. The average of the charging demands
and its standard deviations resulting from the MFG equilibrium are
obtained as shown in Table 4 below.

Table 4: Average and standard deviation of the charging demand from the
MFG equilibrium

Average (�
a

) Standard deviation (�
�

)
Morning 18.4 8.7
Afternoon 1.9 8.2
Evening 0 7.9
Night 28.3 9.5

3. Run ETEM-SG robust: We now run ETEM-SG with the additional
robust constraints (53) and (54) where �

u

= �
a

+ �
�

and �
l

=
�

a

��
�

and obtain the new charging strategy given in Table 5.
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Table 5: Charging demand from ETEM-SG robust

Morning 11.2
Afternoon 0
Evening 0
Night 37.7

We observe that the marginal costs do not change.

4. Check consistency: We run the MFG model with the new charging
demands computed by ETEM-SG and we observe that the average and
standard deviation of the charging demand from the MFG equilibrium
remain the same. The two model results are thus consistent and we
stop.

4 Discussion and conclusion

We have proposed an approach for considering demand constraints in a
power dispatch submodel of a large scale energy model, when these demands
are generated by a large number of small prosumers. We have focused on the
strategic charging of PHEVs batteries, but the approach could be extended
to other types of distributed energy resources provided by prosumers. In
a deterministic programming setting, the behavior of prosumers is modeled
using the Wardrop equilibrium concept, whereas, in a fully stochastic set-
ting, we propose to use an MFG to compute the non-cooperative equilibrium
resulting from the behavior of an ensemble of small independent prosumers.

In fact the Wardrop equilibrium is a simplified MFG equilibrium where
agents are considered perfectly deterministic, identical in dynamics, cost and
initial conditions. As such, they can be aggregated into a single macro agent
representing the total load dynamics. In the MFG case, while the agents
are classwise homogeneous, they remain individually stochastic, driven by
independent noise processes and starting from independent yet identically
distributed random initial conditions. This is a more realistic description
and leads to an aggregate behavior which remains stochastic. This stochas-
ticity subsequently informs the formulation of an operator robust optimum
power generation scheme.

The physical meaning of the mean-field assumption in an actual grid is
that the demand for charging and the supply of distributed energy resources
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will be inherently stochastic and driven by a strategic response of prosumers
to a dynamic pricing scheme. Normally, the per unit cost of power should be
a function of total demand and the particular node where the load is being
drawn. When the load is stochastic, as for example in the case of a collection
of PHEVs, this would result in a highly unpredictable and fluctuating pric-
ing scheme. This is an undesirable situation for both the operator and the
individual agent. By assuming that the number of connected cars is roughly
stable, the mean load per car becomes a reasonable measure, albeit a risk
neutral one, of the global PHEVs consumption. Thus the operator could
announce that it will be using the trajectory of mean demand per car to help
set the unit price of power. Interestingly, cars are individually optimizing
agents in a game where the only coupling of their otherwise independent
battery dynamics occurs through cost. As the number of PHEVs increases
indefinitely, their pairwise coupling gets weaker and weaker, and eventually,
the law of large numbers kicks in to make the mean demand trajectory de-
terministic. This is the mean field limit. It is a useful state because at that
point individual cars have to solve an optimal control problem, and no longer
a much more complex game, since the mass behavior becomes insensitive to
individual actions. The mean field limit demand trajectory is then obtained
by requiring that it is replicated as the mean demand of individuals under
their best response to the associated pricing trajectory (basically a fixed
point calculation). The result is a predictable pricing trajectory (a desir-
able result) which is a Nash equilibrium for the infinite population, and an
approximate Nash for the actual finite population with possible gains of a
single agent deviating from the control policy associated with the mean field
equilibrium provably going to zero as the number of agents goes to infinity
[20]. Still, the cars global demand remains stochastic and if one character-
izes the evolution of its probability distribution, the operator can use that
information to develop computationally tractable optimal power generation
schemes with adequate robustness properties.

By introducing a linking procedure, based on the use of a dynamic pricing
scheme, we are able to circumvent the di�culty arising from the introduc-
tion of nonlinear complementarity constraints (in the deterministic case) or
complex chance constraints in the fully stochastic case. The price adjust-
ment is indeed ad hoc, indeed, although although it exhibits as we shall
argue interesting properties. Note that it includes the nodal marginal cost
(there is a general trend currently to extend marginal cost pricing to nodal
and time of use marginal cost pricing (see [22])). In practice the precise
marginal cost computation may be quite di�cult. If we had chosen to in-
clude dynamic nodal marginal cost in an equilibrium model we will end up
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with a hierarchical two-level optimization problem, too complicated. Our
pricing scheme and the two-model dialogue is, instead, a heuristic. It per-
mits the inclusion of PHEVs strategic charging in the dispatch submodel
of a global capacity expansion model used to assess transition to sustain-
ability. The proposed price adjustment scheme has the interesting property
that it modifies the “o�cial” marginal costs in such a way that mean car de-
mand ends up following a trajectory such that on that trajectory, marginal
costs initially calculated for an ideal demand scenario apply. So, ultimately,
cars end up paying for their realized demand at the “ideal” marginal costs.
While they were forbidden from deviating from the ideal demand through
adequately modified marginal costs, no trace of this modification persists
on the final car demand trajectory.

Simple numerical experiments showed how the procedure works in both
deterministic and stochastic settings. Future research work includes exten-
sive applications of the proposed linking procedure. In particular this game
theoretic structure used to represent the strategic charging of PHEVs should
be extended to other types of interactions between utilities and prosumers;
we refer in particular to new markets for distributed energy resources, like
e.g., secondary reserve to mitigate intermittency of wind and solar power,
reactive power compensation, and other system services required to foster
massive renewables penetration in power systems.
Acknowledgements. This paper was made possible by Canadian IVADO
programme (VORTEX Project) and by NPRP grant number 10-0212-170447
from the Qatar National Research Fund (a member of Qatar Foundation).
The first author acknowledges partial support from FONDECYT through
grant 1190325. The findings herein reflect the work, and are solely the
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5 Appendix

5.1 Proof of Propositions 1 and 2

Propositions 1 and 2 are special cases of a more general theorem in RO, by
taking into account that �

a

(⌧)  �
`

(⌧) and �
u

(⌧)  �
a

(⌧), respectively.
For the interested readers, we state now the general theorem and prove
Proposition 1 as a corollary. In order to show the derivation we shall use
the concise notation

z
0

+
X

⌧

z
⌧

⇠
⌧

 0 (72)
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to represent the inequality (53). The coe�cients ẑ are easily identified as

z
0

=
T�1X

⌧=0

�
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(⌧)��
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The proof is similar for Proposition 2 considering

z
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=
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(⌧)��
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(⌧)).

The main result can be formulated as

Theorem 2 Let ⌘
⌧

be T independent random variables with common sup-
port [�1, 1] and known means E(⌘

⌧

) = ⌫
⌧

. The probabilistic inequality
ẑ
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ẑ
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⌘
⌧

 0 is satisfied with probability at least (1 � ✏) if there ex-
ists a vector w 2 R⌧ such that the deterministic inequality
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is satisfied.

Note that the range of the random factors is now [�1, 1]. The above the-
orem is the formal statement of the theory for inequalities with random
factors having known means ⌫

⌧

and common range [�1, 1] as discussed in
[9, example 2.4.9, p. 55].

We show now how to prove Proposition 1 as a corollary of Theorem 2.

Proof 1 (Proposition 1) Let us start with (72) and define the variables
⌘
⌧

= 2⇠
⌧

� 1. In view of Assumption 4 the range of ⌘
⌧

is [�1, 1] and
E(⌘

⌧

) = ⌫
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= 2µ
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� 1  0. Inequality (72) becomes

z
0

+
1

2

X

⌧

z
⌧

+
1

2

X

⌧

z
⌧

⌘
⌧

 0.

Let ẑ
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⌧

= z
⌧

/2. The hypotheses of Theorem 2 for the
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is a su�cient condition to ensure the constraint satisfaction with probability
at least (1� ✏). If we substitute ⌫

⌧

, ẑ
0

and ẑ
⌧

by their values, we obtain the
condition

z
0

+
X

⌧

µ
⌧

z
⌧

+
X

⌧

(|w
⌧

|+w
⌧

�2µ
⌧

w
⌧

)+

r
T

2
ln

1

✏
max
⌧

|z
⌧

�2w
⌧

|  0. (74)

Recall that z
⌧

= �
a

(⌧) � �
`

(⌧) � 0. We claim that only positive values
w � 0 need to be considered. Indeed, the theorem does not specify the value
it should take. In particular, we can choose w so as to have to minimize the
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this term can be made smaller by taking w
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0 = 0. Hence, we can assume
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With w � 0 inequality (74) becomes
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Writing u for 2w in the above inequality, we obtain the condition
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Using the same argument as before, we easily prove that we can restrict our
choice of u to u  z. Hence, |z

⌧

�u
⌧

| = z
⌧

�u
⌧

� 0 and using the additional
scalar variable v � 0 we can transform our inequality into
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u � 0, v � 0.

This concludes the proof of the proposition.
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